
CS193p

Spring 2016

Stanford CS193p
Developing Applications for iOS

Spring 2016

CS193p

Spring 2016

Today
Multiple MVCs

Segues
Demo: Emotions in FaceIt

View Controller Lifecycle
Demo: VCL in FaceIt

CS193p

Spring 2016

Segues
We’ve built up our Controllers of Controllers, now what?

Now we need to make it so that one MVC can cause another to appear
We call that a “segue”

Kinds of segues (they will adapt to their environment)
Show Segue (will push in a Navigation Controller, else Modal)
Show Detail Segue (will show in Detail of a Split View or will push in a Navigation Controller)
Modal Segue (take over the entire screen while the MVC is up)
Popover Segue (make the MVC appear in a little popover window)

Segues always create a new instance of an MVC
This is important to understand
The Detail of a Split View will get replaced with a new instance of that MVC
When you segue in a Navigation Controller it will not segue to some old instance, it’ll be new

CS193p

Spring 2016

Segues
How do we make these segues happen?

Ctrl-drag in a storyboard from an instigator (like a button) to the MVC to segue to
Can be done in code as well

CS193p

Spring 2016

Segues

Ctrl-drag from the button

that causes the graph to appear

to the MVC of the graph.

CS193p

Spring 2016

Segues

Select the kind of segue you want.

Usually Show or Show Detail.

CS193p

Spring 2016

Segues

Now click on the segue

and open the Attributes Inspector

CS193p

Spring 2016

Segues
Give the segue a unique identifier here.

It should describe what the segue does.

CS193p

Spring 2016

Segues
What’s that identifier all about?

You would need it to invoke this segue from code using this UIViewController method
func performSegueWithIdentifier(identifier: String, sender: AnyObject?)
(but we almost never do this because we set usually ctrl-drag from the instigator)
The sender can be whatever you want (you’ll see where it shows up in a moment)
You can ctrl-drag from the Controller itself to another Controller if you’re segueing via code
(because in that case, you’ll be specifying the sender above)

More important use of the identifier: preparing for a segue
When a segue happens, the View Controller containing the instigator gets a chance

to prepare the destination View Controller to be segued to
Usually this means setting up the segued-to MVC’s Model and display characteristics
Remember that the MVC segued to is always a fresh instance (never a reused one)

CS193p

Spring 2016

func prepareForSegue(segue: UIStoryboardSegue, sender: AnyObject?) {
 if let identifier = segue.identifier {
 switch identifier {
 case “Show Graph”:
 if let vc = segue.destinationViewController as? GraphController {
 vc.property1 = …
 vc.callMethodToSetItUp(…)
 }
 default: break
 }
 }
}

The method that is called in the instigator’s Controller

Preparing for a Segue

CS193p

Spring 2016

func prepareForSegue(segue: UIStoryboardSegue, sender: AnyObject?) {
 if let identifier = segue.identifier {
 switch identifier {
 case “Show Graph”:
 if let vc = segue.destinationViewController as? GraphController {
 vc.property1 = …
 vc.callMethodToSetItUp(…)
 }
 default: break
 }
 }
}

The method that is called in the instigator’s Controller

Preparing for a Segue

The segue passed in contains important information about this segue:

1. the identifier from the storyboard

2. the Controller of the MVC you are segueing to (which was just created for you)

CS193p

Spring 2016

func prepareForSegue(segue: UIStoryboardSegue, sender: AnyObject?) {
 if let identifier = segue.identifier {
 switch identifier {
 case “Show Graph”:
 if let vc = segue.destinationViewController as? GraphController {
 vc.property1 = …
 vc.callMethodToSetItUp(…)
 }
 default: break
 }
 }
}

The method that is called in the instigator’s Controller

Preparing for a Segue

The sender is either the instigating object from a storyboard (e.g. a UIButton)

 or the sender you provided (see last slide) if you invoked the segue manually in code

CS193p

Spring 2016

The method that is called in the instigator’s Controller
func prepareForSegue(segue: UIStoryboardSegue, sender: AnyObject?) {
 if let identifier = segue.identifier {
 switch identifier {
 case “Show Graph”:
 if let vc = segue.destinationViewController as? GraphController {
 vc.property1 = …
 vc.callMethodToSetItUp(…)
 }
 default: break
 }
 }
}

Preparing for a Segue

Here is the identifier from the storyboard (it can be nil, so be sure to check for that case)

Your Controller might support preparing for lots of different segues from different instigators

 so this identifier is how you’ll know which one you’re preparing for

CS193p

Spring 2016

For this example, we’ll assume we entered “Show Graph” in the Attributes Inspector

 when we had the segue selected in the storyboard

func prepareForSegue(segue: UIStoryboardSegue, sender: AnyObject?) {
 if let identifier = segue.identifier {
 switch identifier {
 case “Show Graph”:
 if let vc = segue.destinationViewController as? GraphController {
 vc.property1 = …
 vc.callMethodToSetItUp(…)
 }
 default: break
 }
 }
}

The method that is called in the instigator’s Controller

Preparing for a Segue

CS193p

Spring 2016

Here we are looking at the Controller of the MVC we’re segueing to

It is AnyObject, so we must cast it to the Controller we (should) know it to be

func prepareForSegue(segue: UIStoryboardSegue, sender: AnyObject?) {
 if let identifier = segue.identifier {
 switch identifier {
 case “Show Graph”:
 if let vc = segue.destinationViewController as? GraphController {
 vc.property1 = …
 vc.callMethodToSetItUp(…)
 }
 default: break
 }
 }
}

The method that is called in the instigator’s Controller

Preparing for a Segue

CS193p

Spring 2016

This is where the actual preparation of the segued-to MVC occurs

Hopefully the MVC has a clear public API that it wants you to use to prepare it

Once the MVC is prepared, it should run on its own power (only using delegation to talk back)

func prepareForSegue(segue: UIStoryboardSegue, sender: AnyObject?) {
 if let identifier = segue.identifier {
 switch identifier {
 case “Show Graph”:
 if let vc = segue.destinationViewController as? GraphController {
 vc.property1 = …
 vc.callMethodToSetItUp(…)
 }
 default: break
 }
 }
}

The method that is called in the instigator’s Controller

Preparing for a Segue

CS193p

Spring 2016

func prepareForSegue(segue: UIStoryboardSegue, sender: AnyObject?) {
 if let identifier = segue.identifier {
 switch identifier {
 case “Show Graph”:
 if let vc = segue.destinationViewController as? GraphController {
 vc.property1 = …
 vc.callMethodToSetItUp(…)
 }
 default: break
 }
 }
}

The method that is called in the instigator’s Controller

Preparing for a Segue

It is crucial to understand that this preparation is happening BEFORE outlets get set!

It is a very common bug to prepare an MVC thinking its outlets are set.

CS193p

Spring 2016

func prepareForSegue(segue: UIStoryboardSegue, sender: AnyObject?) {
 if let identifier = segue.identifier {
 switch identifier {
 case “Show Graph”:
 if let vc = segue.destinationViewController as? GraphController {
 vc.property1 = …
 vc.callMethodToSetItUp(…)
 }
 default: break
 }
 }
}

The method that is called in the instigator’s Controller

Preparing for a Segue

CS193p

Spring 2016

Preventing Segues
You can prevent a segue from happening too

Just implement this in your UIViewController …
func shouldPerformSegueWithIdentifier(identifier: String?, sender: AnyObject?) -> Bool
The identifier is the one in the storyboard.
The sender is the instigating object (e.g. the button that is causing the segue).

CS193p

Spring 2016

Demo
Emotions in FaceIt

This is all best understood via demonstration
We will create a new Emotions MVC
The Emotions will be displayed segueing to the Face MVC
We’ll put the MVCs into navigation controllers inside split view controllers
That way, it will work on both iPad and iPhone devices

CS193p

Spring 2016

View Controller Lifecycle
View Controllers have a “Lifecycle”

A sequence of messages is sent to a View Controller as it progresses through its “lifetime”.

Why does this matter?
You very commonly override these methods to do certain work.

The start of the lifecycle …
Creation.
MVCs are most often instantiated out of a storyboard (as you’ve seen).
There are ways to do it in code (rare) as well which we may cover later in the quarter.

What then?
Preparation if being segued to.
Outlet setting.
Appearing and disappearing.
Geometry changes.
Low-memory situations.

CS193p

Spring 2016

View Controller Lifecycle
After instantiation and outlet-setting, viewDidLoad is called

This is an exceptionally good place to put a lot of setup code.
It’s better than an init because your outlets are all set up by the time this is called.

override func viewDidLoad() {
super.viewDidLoad() // always let super have a chance in lifecycle methods
// do some setup of my MVC

}

One thing you may well want to do here is update your UI from your Model.
Because now you know all of your outlets are set.

But be careful because the geometry of your view (its bounds) is not set yet!
At this point, you can’t be sure you’re on an iPhone 5-sized screen or an iPad or ???.
So do not initialize things that are geometry-dependent here.

CS193p

Spring 2016

View Controller Lifecycle
Just before your view appears on screen, you get notified
func viewWillAppear(animated: Bool) // animated is whether you are appearing over time

Your view will only get “loaded” once, but it might appear and disappear a lot.
So don’t put something in this method that really wants to be in viewDidLoad.
Otherwise, you might be doing something over and over unnecessarily.

Do something here if things your display is changing while your MVC is off-screen.

You could use this to optimize performance by waiting until this method is called
(as opposed to viewDidLoad) to kick off an expensive operation (probably in another thread).

Your view’s geometry is set here, but there are other places to react to geometry.

There is a “did” version of this as well
func viewDidAppear(animated: Bool)

CS193p

Spring 2016

View Controller Lifecycle
And you get notified when you will disappear off screen too

This is where you put “remember what’s going on” and cleanup code.
override func viewWillDisappear(animated: Bool) {

super.viewWillDisappear(animated) // call super in all the viewWill/Did... methods
// do some clean up now that we’ve been removed from the screen
// but be careful not to do anything time-consuming here, or app will be sluggish
// maybe even kick off a thread to do stuff here (again, we’ll cover threads later)

}

There is a “did” version of this too
func viewDidDisappear(animated: Bool)

CS193p

Spring 2016

View Controller Lifecycle
Geometry changed?
Most of the time this will be automatically handled with Autolayout.

You can reset the frames of your subviews here or set other geometry-related properties.

These methods might be called more often than you’d imagine
(e.g. for pre- and post- animation arrangement, etc.).

So don’t do anything in here that can’t properly (and efficiently) be done repeatedly.

Between “will” and “did”, autolayout will happen.

But you can get involved in geometry changes directly with these methods …
func viewWillLayoutSubviews()
func viewDidLayoutSubviews()
They are called any time a view’s frame changed and its subviews were thus re-layed out.
For example, autorotation (more on this in a moment).

CS193p

Spring 2016

View Controller Lifecycle
Autorotation

Usually, the UI changes shape when the user rotates the device between portrait/landscape
You can control which orientations your app supports in the Settings of your project

But if you, for example, want to participate in the rotation animation, you can use this method …

func viewWillTransitionToSize(
size: CGSize,
withTransitionCoordinator: UIViewControllerTransitionCoordinator

)

Almost always, your UI just responds naturally to rotation with autolayout

The coordinator provides a method to animate alongside the rotation animation
We are not going to be talking about animation, though, for a couple of weeks
So this is just something to put in the back of your mind (i.e. that it exists) for now

CS193p

Spring 2016

View Controller Lifecycle
In low-memory situations, didReceiveMemoryWarning gets called ...

This rarely happens, but well-designed code with big-ticket memory uses might anticipate it.
Examples: images and sounds.
Anything “big” that is not currently in use and can be recreated relatively easily

should probably be released (by setting any pointers to it to nil)

CS193p

Spring 2016

View Controller Lifecycle
awakeFromNib

This method is sent to all objects that come out of a storyboard (including your Controller).
Happens before outlets are set! (i.e. before the MVC is “loaded”)
Put code somewhere else if at all possible (e.g. viewDidLoad or viewWillAppear).

CS193p

Spring 2016

View Controller Lifecycle
Summary

Instantiated (from storyboard usually)
awakeFromNib
segue preparation happens
outlets get set
viewDidLoad
These pairs will be called each time your Controller’s view goes on/off screen …

viewWillAppear and viewDidAppear
viewWillDisappear and viewDidDisappear

These “geometry changed” methods might be called at any time after viewDidLoad …
viewWillLayoutSubviews (… then autolayout happens, then …) viewDidLayoutSubviews

If memory gets low, you might get …
didReceiveMemoryWarning

CS193p

Spring 2016

View Controller Lifecycle
Demo

Let’s plop some print statements into the View Controller Lifecycle methods in FaceIt
Then we can watch as Face and Emotions MVCs go through their lifecycle

